2,561 research outputs found

    Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model

    Get PDF
    Recent Arctic sea ice loss in fall has been posited to drive midlatitude circulation changes into winter and even spring. Past work has shown that sea ice loss can indeed trigger a weakening of the stratospheric polar vortex, which can lead to delayed surface weather changes. But the mechanisms of such changes and their relevant time scales have remained unclear. This study uses large ensembles of idealized GCM simulations to identify how and over what time scales the atmospheric circulation responds to short-term surface heat flux changes in high latitudes. The ensemble-mean response of the atmospheric circulation is approximately linear in the amplitude of the surface forcing. It is also insensitive to whether the forcing is zonally asymmetric or symmetric, that is, whether stationary waves are generated or not. The circulation response can be decomposed into a rapid thermal response and a slower dynamic adjustment. The adjustment arises through weakening of vertical wave activity fluxes from the troposphere into the stratosphere in response to polar warming, a mechanism that differs from sudden stratospheric warmings yet still results in a weakened stratospheric circulation. The stratospheric response is delayed and persists for about 2 months because the thermal response of the stratosphere is slow compared with that of the troposphere. The delayed stratospheric response feeds back onto the troposphere, but the tropospheric effects are weak compared with natural variability. The general pathway for the delayed response appears to be relatively independent of the atmospheric background state at the time of the anomalous surface forcing

    Hydrogen content in doped and undoped BaPrO3 and BaCeO3 by cold neutron prompt-gamma activation analysis

    Get PDF
    Proton uptake in undoped and Y-doped BaPrO3 has been measured by cold neutron prompt-gamma activation analysis, and compared to the proton uptake in Gd-doped BaCeO3, as determined by the same technique. The conventional proton incorporation model of perovskites in which oxygen ion vacancies, generated by the introduction of the trivalent dopant onto the tetravalent perovskite site, are filled with hydroxyl groups upon exposure of the sample to H2O containing atmospheres, predicts that the proton concentration in such materials should be no greater than the dopant concentration. In contradiction to this model, the proton concentration in BaPr1–xYxO3 after humidification is as much as three times greater than the dopant concentration, and even undoped samples contain a high concentration of protons. Moreover, x-ray photoemission spectra suggest that the Pr oxidation state is lowered upon hydration. In contrast, BaCe0.9Y0.1O3 shows a typical hydrogen concentration, of close to 90% of the yttrium concentration. The results are interpreted in terms of the variable valence of Pr, which can become reduced from the 4+ to the 3+ oxidation state upon exposure to water, and effectively behaves as a self-dopant within the structure

    Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events

    Get PDF
    The Dansgaard-Oeschger events of the last ice age are among the best studied abrupt climate changes, yet a comprehensive explanation is still lacking. They are most pronounced in the North Atlantic, where they manifest as large temperature swings, on timescales of decades or shorter, between persistent cold (stadial) and warm (interstadial) conditions. This review examines evidence that Dansgaard-Oeschger events are an unforced or “spontaneous” oscillation of the coupled atmosphere-ice-ocean system comprising the North Atlantic, Nordic Seas and Arctic, collectively termed the Northern Seas. Insights from reanalysis data, climate model simulations, and idealized box model experiments point to the subpolar gyre as a key coupling region where vigorous wind systems encounter the southernmost extension of sea ice and the most variable currents of the North Atlantic, with connections to the deep ocean via convection. We argue that, under special conditions, these components can interact to produce Dansgaard-Oeschger events. Finding the sweet spot is a matter of understanding when the subpolar region enters a feedback loop whereby changes in wind forcing, sea ice cover, and ocean circulation amplify and sustain perturbations towards cold (ice-covered) or warm (ice-free) conditions. The resulting Dansgaard-Oeschger-like variability is seen in a handful of model simulations, including some “ugly duckling” pre-industrial simulations: these may be judged as undesirable at the outset, but ultimately show value in suggesting that current models include the necessary physics to produce abrupt climate transitions, but exhibit incorrect sensitivity to the boundary conditions. Still, glacial climates are hypothesized to favour larger, more persistent transitions due to differences in large-scale wind patterns. Simplified models and idealized experimental setups may provide a means to constrain how the critical processes act, both in isolation and in combination, to destabilize the subpolar North Atlantic.publishedVersio

    Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique

    Get PDF
    Forthcoming surveys such as the Large Synoptic Survey Telescope (LSST) and Euclid necessitate automatic and efficient identification methods of strong lensing systems. We present a strong lensing identification approach that utilizes a feature extraction method from computer vision, the Histogram of Oriented Gradients (HOG), to capture edge patterns of arcs. We train a supervised classifier model on the HOG of mock strong galaxy-galaxy lens images similar to observations from the Hubble Space Telescope (HST) and LSST. We assess model performance with the area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve. Models trained on 10,000 lens and non-lens containing images images exhibit an AUC of 0.975 for an HST-like sample, 0.625 for one exposure of LSST, and 0.809 for 10-year mock LSST observations. Performance appears to continually improve with the training set size. Models trained on fewer images perform better in absence of the lens galaxy light. However, with larger training data sets, information from the lens galaxy actually improves model performance, indicating that HOG captures much of the morphological complexity of the arc finding problem. We test our classifier on data from the Sloan Lens ACS Survey and find that small scale image features reduces the efficiency of our trained model. However, these preliminary tests indicate that some parameterizations of HOG can compensate for differences between observed mock data. One example best-case parameterization results in an AUC of 0.6 in the F814 filter image with other parameterization results equivalent to random performance.Comment: 18 pages, 14 figures, summarizing results in figure

    Connecting ocean heat transport changes from the mid-latitudes to the Arctic Ocean

    Get PDF
    Under greenhouse warming, climate models simulate a weakening of the Atlantic Meridional Overturning Circulation and the associated ocean heat transport at midlatitudes but an increase in the ocean heat transport to the Arctic Ocean. These opposing trends lead to what could appear to be a discrepancy in the reported ocean contribution to Arctic amplification. This study clarifies how ocean heat transport affects Arctic climate under strong greenhouse warming using a set of the 21st century simulations performed within the Coupled Model Intercomparison Project. The results suggest that a future reduction in subpolar ocean heat loss enhances ocean heat transport to the Arctic Ocean, driving an increase in Arctic Ocean heat content and contributing to the intermodel spread in Arctic amplification. The results caution against extrapolating the forced oceanic signal from the midlatitudes to the Arctic.publishedVersio

    Suppressed eddy driving during southward excursions of the North Atlantic jet on synoptic to seasonal time scales

    Get PDF
    Jet streams shape midlatitude weather and climate. The North Atlantic jet is mainly eddy‐driven, with frequent north–south excursions on synoptic time scales arising from eddy forcings and feedbacks. There are, however, special periods during which the underlying dynamics appear to change—for example, winter 2009/2010, when the jet was persistently southward‐shifted, extremely zonal, and more thermally driven. This study shows evidence that the southern jet configuration exhibits altered dynamical behavior involving a shift in the balance of thermal and eddy‐driving processes, independent of timescale. Specifically, southern jets exhibit weaker eddy feedbacks and are associated with enhanced heating in the tropical Pacific. During winter 2009/2010, a remarkably frequent (66 days out of the 90‐day winter season) and persistent southern jet shaped the unusual seasonal signature. These results bridge the synoptic and climate perspectives of jet variability, with potential to help understand and reduce biases in regional climate variability as simulated by models.publishedVersio

    Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model

    Get PDF
    Recent Arctic sea ice loss in fall has been posited to drive midlatitude circulation changes into winter and even spring. Past work has shown that sea ice loss can indeed trigger a weakening of the stratospheric polar vortex, which can lead to delayed surface weather changes. But the mechanisms of such changes and their relevant time scales have remained unclear. This study uses large ensembles of idealized GCM simulations to identify how and over what time scales the atmospheric circulation responds to short-term surface heat flux changes in high latitudes. The ensemble-mean response of the atmospheric circulation is approximately linear in the amplitude of the surface forcing. It is also insensitive to whether the forcing is zonally asymmetric or symmetric, that is, whether stationary waves are generated or not. The circulation response can be decomposed into a rapid thermal response and a slower dynamic adjustment. The adjustment arises through weakening of vertical wave activity fluxes from the troposphere into the stratosphere in response to polar warming, a mechanism that differs from sudden stratospheric warmings yet still results in a weakened stratospheric circulation. The stratospheric response is delayed and persists for about 2 months because the thermal response of the stratosphere is slow compared with that of the troposphere. The delayed stratospheric response feeds back onto the troposphere, but the tropospheric effects are weak compared with natural variability. The general pathway for the delayed response appears to be relatively independent of the atmospheric background state at the time of the anomalous surface forcing

    Can we use ice sheet reconstructions to constrain meltwater for deglacial simulations?

    Get PDF
    Freshwater pulses from melting ice sheets are thought to be important for driving deglacial climate variability. This study investigates challenges in simulating and understanding deglacial climate evolution within this framework, with emphasis on uncertainties in the ocean overturning sensitivity to meltwater inputs. The response of an intermediate complexity model to a single Northern Hemisphere meltwater pulse is familiar: a weakening of the ocean overturning circulation in conjunction with an expansion of sea ice cover and a meridional temperature seesaw. Nonlinear processes are vital in shaping this response and are found to have a decisive influence when more complex scenarios with a history of pulses are involved. A meltwater history for the last deglaciation (21–9 ka) was computed from the ICE‐5G ice sheet reconstruction, and the meltwater was routed into the ocean through idealized ice sheet drainages. Forced with this meltwater history, model configurations with altered freshwater sensitivity produce a range of outcomes for the deglaciation, from those in which there is a complete collapse of the overturning circulation to those in which the overturning circulation weakens slightly. The different outcomes are interpreted in terms of the changing hysteresis behavior of the overturning circulation (i.e., non‐stationary freshwater sensitivity) as the background climate warms through the course of the deglaciation. The study illustrates that current uncertainties in model sensitivity are limiting in efforts to forward‐model deglacial climate variability. Furthermore, ice sheet reconstructions are shown to provide poor constraints on meltwater forcing for simulating the deglaciation.publishedVersio
    • 

    corecore